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Abstract. The rescarch presented in this paper highlights the importance of
prediction and action as part of the perceptual process of a cognitive system.
Through interaction with its environment a forward model is trained to predict
multi-modal scnsory representations formed by visual and tactile stimuli. The
forward model is mounted on a simulated artificial agent and implemented as an
artificial neural network, the data used for training comes from the simulated
cnvironment of the agent. Once trained, the predictions of the network are
thoroughly analysed, the forward model is then implemented on the simulated
agent in a typical obstacle avoidance task with a phototropic behaviour. Results

show that forward modecls can represent a very important tool for the behaviour
of autonomous agents.

1 Introduction

Classical views of cognition explain behaviour as a product of a direct, unidirectional
line of information processing. Sensory inputs create a sensory representation and ac-
cording to this a motor action is performed, actions are regarded as reactions, responses
to stimuli. Most of the observed behaviour is considered a consequence of an innate
stimulus-response mechanism that is available to the individual [1]. Known as the in-
Jormation processing metaphor, this framework thinks of the perception processes as
modules that receive, modify and then pass the information available from the envi-
ronment.

A novel approach to perception considers sensory input and action (motor output)
as part of the same cognitive process. Only in recent times the idea that the anticipation
of actions and/or sensory states influence behaviour is been appreciated. In the ficld of
cognitive psychology these ideas have recently received much attention. Anticipations
are now seen to play an important role on the coordination, planning and realisation
of behaviour [2]. The linear information processing approach has given way to new
frameworks according to which the direction of information flow is not anymore a
one-way path.

At the centre of this view is the importance played by the body of the agent and
its dynamic relation with the environment. An interesting proposal is presented by
Hommel et al. [3]: The Theory of Event Coding (TEC) which is “.. based on the
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central notion that perceplion, attention, intention and action share, or operate on, a
common representational domain”(3]. TEC links perception and action functionally. It
is this link and its coordination that provides the basis for adaptive behaviour [3].
Within this framework, sensory representations are also considered as consequences
of actions. Any action realised by an agent on the cnvironment has cffects (action
cffcets) and are the main reasons for behaviour. Representations that code for the
environmental and bodily consequences of a movement become associated to motor
representations coding for that actual movement [4]. The planning and control of ac-
tions becomes anticipatory when it is driven by the desired sensory situations or desired
action cffccts.
The cornerstone of this research is the importance of predictions and actions as part
of the perceptual process of the cognitive system. The cognitive model is learned and
tested through interaction of the agent with its surroundings. The qualitative testing
of the decisions the agent takes is based on the needs of the agent to act within its own
world. For these reasons, we argue that the agent is grounded in its environment [5).
The objective of the research reported here is the better understanding of the effects
and extent of the abilities the implementation of cognitive models affords an artificial

agent.

2 Forward Models

re forward models. Mainly used in the field of
internal model which incorporates knowledge
generated actions of an agent ([6],(7]). Given a
(intended or actual action) the forward

A computational equivalent proposal a
motor control, a forward model is an

about sensory changes produced by self-
sensory situation S; and a motor command M,

model predicts the next sensory situation Si+1-

Forward models provide an alternative to the classical information processing views
on perception. Maller [8] suggested forward models as a possibility to integrate visual
perception and action generation.

In the realm of artificial autonomous agents anticipation and forward modcls can
be used as a base for coherent behaviour. Autonomous agents interact with their envi-
ronment in a direct way. A basic need for them to deal with their world is to predict the
events happening. An anticipatory agent learning and using a forward model should be
able then to have sufficient information to form planning strategics avoiding undesired
situations and reacting timely to the hazards of its environment. Very interesting re-
sults have been presented by Dearden et al. [9], where a robot learns a forward model
that successfully imitates actions presented to its visual system. Other implementations
of cognitive approaches are discussed in Section 5.

The work presented in this paper attempts to provide an artificial agent with the
necessary tools to predict undesired situations. The prediction of the agent is based on
the inputs to the forward model, this prediction is characterized by the association of

visual and tactile stimuli. In the context of TEC, this association can be considered an
event composed by the motor command and the sensory situations (actual and desired)

(3].
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3 Experiments

The forward model is obtained by trainning an artificial neural network (ANN) with
data coming from a simulated agent, the network is then tested on trajectories not
seen during training. The whole system is implemented on the artificial agent to solve
an obstacle avoiding task while secking for a light source.

3.1 Environment and Data Collection

Using a robot simulator (Fig. 1a) a robot is placed in an arena with obstacles varying
in size from 25-50 pixels. In the Figure the robot is moving forward from left to right.
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Fig. 1. Virtual World of the robot (a) and the recording of a single trajectory (b).

The robot has a diameter of 30 pixels and is equipped with an omni-directional
linear black and white camera and a simulated frontal bumper. The robot moves in a
straight line through the arena, taking snapshots of the environment. Every 20 pixels
a new image is recorded. Figure 1b shows an 80 steps or 1600 pixels trajectory.

In Figure 1b the y axis represents the spatial dimension of the image, this is, the
360 degrees of the robot view and the z axis represents the time dimension. The front
of the robot is located in the middle of the image in the spatial dimension. In the first
snapshot, the obstacles can be seen close together and of a relatively small size. As the
robot moves forward, the obstacles grow and move away from the centre of the robot
until they are at the back of it, (je. in the far right and far left of the image).

Obstacles are randomly placed to the right, left and front of the robot trajectory.
The task of the robot is to predict whether it can perform a collision free trajectory
of 1600 pixels. Figure 2 shows two trajectories where a collision occurs forcing it to
stop (for convinience the trajectories are rotated 90 degrees). As the robot aproaches
obstacles these grow in the image view, the obstaces are located in the central area of
the image as this area represents the front of the robot.

3.2 Data Preprocessing and Forward Model Implementation

Before being used in the system the visual information is preprocessed. Originally,
the images coming from the robot camera have a size of 1000 x 1 pixels, individual
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Fig. 2. Trajectory of robot with a crash at the left. Trajectory length: 62 steps. And trajectory
of robot with a crash at the front. Trajectory length: 50 steps .

trajectorics have different lengths as once the robot encounters an obstacle it stops

recording images. The trajectories are preprocessed as follows:
at the front of the robot is extracted

— A section equivalent to 90 degrees (250 pixels)
dict collision on the front of

from the whole image. As the system requires to pre
the robot, this is the visual information relevant to the task.

— A butterworth one dimensional low-pass filter is applied to the spatial dimension of
the images. This is done in order to get rid of high frequency redundant information.

— Foveal mapping in the spatial domain. Foveal mapping is basically a weighted
subsampling of the image. The farther pixels are from the centre of the image the
more they are subsampled, the pixels at the centre remaining nearly unchanged.
For the subsampling an averaging mask was used.

The effects of applying the preprocessing algorithms to the image shown in Figure 1b

can be seen in Figure 3.

(b)

(a)
Fig. 3. Frontal 90° after filtering (a) and after fovealisation (b).

A system is needed capable of predicting visual information as well as the simulated
bumper states. This system can be implemented as a forward model of the form seen
in Figure 4, where the current sensory situation is composed by the visual images V at
times ¢, { + 1 and t + 2. This form of the input is expected to provide the model with
the necessary information to learn the temporal structure of the data. The output of
the forward model is the visual scene and the bumper state for time ¢ + 3, this is, V43
and By, respectively.

The system performs a local symmetrical prediction. This is, every predictor takes
its input from a section of the sensory input and predicts only the central pixel of that
section. On the edges of the image this is not possible, so the input window is shifted
in order to use the available information.

Given that the final size of the images is 50 pixels, the system consists of 50 feed-
forward, fully connected, multi-layer perceptron networks, using sigmoid activation
functions. The networks are trained using Resilient Back-propagation (RPROP) [10].
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Fig. 4. Particular Forward Model

RPROP is a mcthod to train MLP networks with a we

ight specific adaptation rule de-
pending on the current

and past values of each weight partial derivatives. This ad
method has the effect of accelerating the learning process.
Each network has the following structure:

aptive

— Intput layer: 45 input units that code the visual data of thr
for each time step).

— Hidden layer: 10 units, which at the time were a compromise between performance,
network complexity and training time. Currently we are working on a EEG type of
analysis of the dynamics of the hidden units activation. With this analysis, we hope

to learn among other things whether the size of the hidden layer is the optimal one
for the task.

ce time steps (15 pixels

Output layer: 2 units, one corresponding to the predicted visual value and one for
the predicted bumper value (0 for no collision and 1 for collision),

Training patterns for each network are prepared consisting of several images (46000
patterns) with a mixture of different collisions and collision-free trajectories. It is im-
portant to note that each one of the networks gets the same bumper value assigned, so
that when there is a collision all networks should have an activation value of 1.

3.3 Testing the Forward Model

After training the networks for 6000 cycles of batch training, the testing is done with
trajectories that were unseen by the network during training. The networks are ex-
pected to perform two kinds of prediction. First a one step prediction (OSP), this is,
given the values of V, V4 and V., the values of Vits and Byyy are predicted. This
is the standard network output. Second a long term prediction (LTP) which consists of
using the predicted visual data back as input to the system. This prediction compares
to an internal simulation of the events.

The OSP bumper values are not binary, instead the activation increases as the
robot approaches an obstacle. More importantly, the networks that increase activity
are those on the side of the robot where the obstacle is approaching or where significant
changes on the visual field occur. A threshold is implemented during OSP to indicate
a collision, if 5 or more neurons show an activation higher than 0.5 it means there is a
collision.

The system should have a necessity to trigger LTP and this is also defined as a
threshold. When 3 or more bumper output neurons present an activation greater than
0.3 during OSP, an internal simulation of the rest of the trajectory starts. Although the
threshold might seem low it guarantees that there is no false predictions. The system
was tested on 30 different trajectories. It never failed to trigger LTP when there was in
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reality a (future) collision on the trajectory. Likewise, it never triggered the LTP when

presented with collision-free trajectories.
The visual output a typical testing run can be seen in Fig 5 which shows a trajectory

with a collision on the left side of the robot. The system triggers LTP 2 steps before
it actually happens, in the robot world this means 40 pixels or more than once its own

size of 30 pixels.

Fig. 5. System cvaluation during a collision on the left side of the robot

Similar behaviours are observed during different trajectories. The system triggers

LTP when a collision is likely to occur, most importantly during LPT the activation
of the bumper units signals the presence of a crash.

The activation of the whole array of bumper output neurons for the last step of
the LTP for three different collisions is presented in Fig. 6. It can be seen that the
output neurons presenting higher activation are those located on the side of the robot
where the collision is going to occur. In the case of the frontal collision, the activation

is higher on the networks where changes in the visual field occur.

Actvation
o

Fig. 6. Activation of the output ncurons for bumper states at the last step of LTP

It is worth noting that Fig. 2 show trajectories and collisions before pre-processing.
Fig 5 shows a trajectory with a collision after preprocesing, the fovealization process
has the effect of stretching the central region of the real image. It is for this reason that
in Fig. 5 the obstacle seems to be very far from the center of the image when in fact it
is not. The existance of a crash is coded in the data, the system however, detects the
crash correctly just due to the activation of the bumber output neurons.
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3.4 Error Measure

A Sobolev norm Es is applied to the visual data to find an objective measure of the
error, such that:

n n-1
Es=%z:(1'.'—:fi)2+n.l_l Zl(yt"y')z (1)
i=1 i=

where y; = z; — z;;, and ¥i = £ — x4,

The first term of Eq. 1 is the Sum Squared Error (SSE) between the real data z and
the predicted data . The second term provides a measure not only of the difference
between the two sets of data but of the posible existence of oscillation between the
data and the prediction.

Fig. 7a shows the Es for several trajectories during 40 time steps of Long Term
Prediction (LTP). Fig. 7b shows the second term of Eq. 1 for the same period of
time and the same trajectories, showing that the oscillations between real data and
prediction are minimal. The curves on Fig. 7b stick to the general shape of their
counterparts on Fig. 7a.

TR R ——

Time (b)

Fig. 7. Es and the second term of Eq. 1 during 40 stcps of LTP

The different shapes of the curves are due to the different starting points of the
LTP as well as to the characteristics of the data. The two curves that tend to zero are
predictions where no crash occurs, therefore the obstacles in the visual data dissappear.

4 Implementation

The trained forward model was implemented on the simulated agent used for collecting
the data. The data coming from the camera was preprocessed and fed to the network
as the agent was moving. The robot has the task of secking a light source, avoiding
collisions with nearby obstacles. The light sensing ability is completely independent of
the vision or tactile senses of the robot. The robot, the light source and a number of
objects are set on an initial random position.

Three behaviours are defined: a) light seeking. making the robot head directly into
the light, b)prediction, if detecting high activation of the bumper units, the robot
stops moving and performs an internal prediction and c) obstacle avoidance. The same
thresholds are used; when there is activation on the bumper units long term prediction
(LTP) is triggered. In case LTP finds the possibility of a future crash the obstacle
avoidance behaviour takes over the light seeking behaviour.
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As shown in Fig. 6 the activation of the bumper output units conveys information
about the location of obstacles. This information is used to take avoiding action. De-
pending on the units that are registering the highest activation the robot decides where
to turn. Fig. 8 shows the robot making its way through a set of obstacles on its way
towards the light source. The robot performs a straight trajectory until the bumper
units present high activation. The robot then performs an internal prediction which

prompts it to change course.

Fig. 8. Robot sccking a light source and avoiding a set of obstacles.

the robot can only predict sensory situations when
nstant for at least 3 steps. This means that once the
ds the light or by avoiding an obstacle, it
d before being able to perform a

It is important to note that
the motor command has been co
robot turns, either by changing course towar
needs to move 3 steps with a constant motor comman

prediction.

5 Conclusions

The presented experiments show that anticipation and forward models can provide
agents with useful strategies. The agent presented here is capable of predicting the
consequences of its own acts and take provisions for future actions. The system does
this by learning an association between visual and tactile stimuli.

Our work differs from other research using forward models in several aspects. Hoff-
man et. al [11] presented a chain of forward models that provides an agent with the
capability to select different actions to achieve a goal situation and perform mental
transformations. The main difference with this system is that the forward model pre-
sented here performs the prediction of the same event (collision) using two sensor
modalities (tactile and visual). The visual input to our forward model is completely
grounded in that it does not have any sort of assumptions about distance. The system
learns to estimate distance through interaction with its environment, associating visual

input and tactile experience.
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A form of anticipation is presented by Ziemke et al. {12], however their results
for long term prediction are very constrained by the environment in which the robots
evolved. In our case the model is capable of solving diferent scenarios,
necessary predictions and reacting timely to obstacles on its path.

Although the task presented here can be solved by
this model presents the advantage of anticipation. The implementation of more complex
tasks in the robot environment should prove that an anticipatory agent is capable of

avoiding typical problems in which a reactive agent fails such as corners and dead-end
situations.

performing the

different and simpler systems,

6 Future Work

Further use of the system here presented can include beha
derstanding of ego motion and its consequences is necessa:
ported here, includes analysis of the system predictions to distinguish between, changes
brought up in the environment because of its own movement and those changes in the
environment brought up by other agents and their respective actions.

The multi sensory representation of stimuli (visual and tactile) should also be
present in the internal dynamics of the network. These dynamics should become more
interesting with non-constant motor commands. As proposed by TEC (3], hidden units

of the system would share resources when coding of actions and multi-sensory percep-
tion.

viour in which the un-
ry. Current work, not re-
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